
Sample Docker Compose configuration for running qBitTorrent as a container routed through another Mullvad
container.

Note: In theory this should work with other VPN providers, but I have only tested it with Mullvad specifically. Port
forwarding will only work if the VPN provider supports port forwarding, but torrenting might still work regardless.
Keep in mind that without port forwarding, you'll usually end up with less peers and thus downloads make take
longer. You will also restrict the amount of peers you can upload (seed) to.

Mullvad is removing support for port forwarding. I'm keeping this page up for historical reasons (and I'll try to
generalize places where I've named Mullvad directly), but keep in mind that you'll have to rely on other VPN
providers that support port forwarding.

The /r/VPNTorrents subreddit has a thread for VPN recommendations that might be useful to those that are
looking into alternatives.

I am personally using AirVPN. Feel free to use my referral link if you plan on using it as well :)

For port forwarding to work, you have to set the "Listening port" (Settings -> Connection -> Listening port) in
qBitTorrent to the correct forwarded port from your VPN provider.

Screenshot of listening port settings page

I also recommend forcing qBitTorrent to use the VPN network interface (Advanced -> Network interface), though
I'm not sure if it matters much

Screenshot of network interface settings page

Docker: VPN with Port
Forwarding (WireGuard) &
qBitTorrent

Update - June 2023

Port forwarding

docker-compose.yml file

https://mullvad.net/
https://mullvad.net/en/blog/2023/5/29/removing-the-support-for-forwarded-ports/
https://www.reddit.com/r/VPNTorrents/comments/rikthc/list_of_recommended_vpns_2022/
https://decic.us/airvpn
https://cdn-wiki.thomassen.pm/uploads/images/gallery/2021-10/2021-10-09-kmq8qk.png
https://cdn-wiki.thomassen.pm/uploads/images/gallery/2021-10/2021-10-09-rmdprx.png

services:

 vpn:

 container_name: wireguard

 image: jordanpotter/wireguard

 cap_add:

 - NET_ADMIN

 - SYS_MODULE

 sysctls:

 net.ipv4.conf.all.src_valid_mark: 1

 net.ipv6.conf.all.disable_ipv6: 0

 volumes:

 ### I use AirVPN, so first I have a "device": https://airvpn.org/devices/

 ### Then I make sure to open a port (with P2P support) via:

https://airvpn.org/ports/

 ### For that generated port, I choose the device I created earlier.

 ### The WireGuard config is then generated via https://airvpn.org/generator/

 ### Select one of the servers closest to where you're hosting your qBitTorrent

setup

 ### Download the .conf file, rename it to vpn.conf and put it in the same folder

as the docker-compose.yml file.

 - ./vpn.conf:/etc/wireguard/vpn.conf

 ports:

 ### I run NGINX on the host server for a reverse proxy.

 ### The secondary `8080` matches the `WEBUI_PORT` on the qBitTorrent container

configuration below.

 - "127.0.0.1:8888:8080"

 restart: unless-stopped

 ### Uses the LinuxServer.io image of qBitTorrent: https://github.com/linuxserver/docker-

qbittorrent/pkgs/container/qbittorrent

 ### You might have to manually update it to 5.1.x, 5.2.x or even 6.x.x eventually.

 ### Keep in mind though that depending on how recent those versions are, they may not be

compatible with some private trackers.

 qbittorrent:

 container_name: qbittorrent

 image: ghcr.io/linuxserver/qbittorrent:5.0.4

 restart: unless-stopped

 depends_on:

 - vpn

 ### The `network_mode` line is important. It will force all networking to go through

the VPN container. Works as a killswitch should the VPN connection drop.

 network_mode: "service:vpn"

 volumes:

 ### This holds the qBitTorrent configuration. If you want, you could rely on

Docker volumes instead. I prefer have it all in the same directory as my Docker Compose yml

files.

 - ./config:/config

 ### /data is where I point my downloads towards, you might use /mnt - or something

else. Up to you!

 - /data:/data

 environment:

 ### For permissions, you might have to adjust this depending on your user or group

ID in Linux.

 ### You can use `id your-username-here` on the server/system you're running Docker

to figure out what user ID (uid) and group ID (gid) you wanna use.

 # - PUID=112

 # - PGID=114

 ### Depending on where you live, you might want to change the line below.

Europe/Oslo should work for anyone in Central European Time though :)

 - TZ=Europe/Oslo

 - WEBUI_PORT=8080

NGINX configuration file
This is loosely based on the following:

qBitTorrent GitHub wiki: https://github.com/qbittorrent/qBittorrent/wiki/NGINX-Reverse-

Proxy-for-Web-UI

My personal NGINX bootstrapping script:

https://gist.github.com/Decicus/2f09db5d30f4f24e39de3792bba75b72

Someone's reddit comment while I was researching, I wish I could find it again...

Comments that are prefixed with 3 hashtags (such as this one), should not be uncommented.

Otherwise they will break the NGINX config.

server {

 listen 443 ssl http2;

 listen [::]:443 ssl http2;

 server_name qbittorrent.example.com;

 root /var/www/html;

 ssl_certificate /srv/ssl/qbittorrent/fullchain.pem;

 ssl_certificate_key /srv/ssl/qbittorrent/key.pem;

 server_tokens off;

 ### These files are included as part of my NGINX bootstrapping script:

https://gist.github.com/Decicus/2f09db5d30f4f24e39de3792bba75b72

 ### So normally I'd just put `include ssl_params.conf` and call it a day.

 ssl_protocols TLSv1.2 TLSv1.3;

 ssl_ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-

GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-

POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;

 ssl_prefer_server_ciphers off;

 ### dhparams will have to be created here

 ### See this script file:

https://gist.github.com/Decicus/2f09db5d30f4f24e39de3792bba75b72#file-generate-dhparams-sh

 ssl_dhparam /etc/nginx/dhparams.pem;

 ssl_session_cache builtin:1000 shared:SSL:10m;

 ssl_session_timeout 1d;

 ssl_session_tickets off;

 add_header X-Frame-Options "SAMEORIGIN";

 add_header X-XSS-Protection "1; mode=block";

 add_header X-Content-Type-Options "nosniff";

 add_header Strict-Transport-Security "max-age=63072000; includeSubDomains; preload";

 ### CSP that whitelists a userstyle I use in my browser, for the qBitTorrent web UI:

https://docs.theme-park.dev/themes/qbittorrent/

 ### Might wanna tweak it to your own liking if you don't use it.

 ### Commented by default, because it generally causes more headaches than it helps...

 # add_header Content-Security-Policy "default-src https://use.fontawesome.com https: moz-

extension: 'self' 'unsafe-inline'; style-src https://gilbn.github.io https://theme-park.dev

https://qbittorrent.example.com https://raw.githubusercontent.com https://use.fontawesome.com

'unsafe-inline'; img-src https:";

 index index.nginx-debian.html index.html index.htm;

 charset utf-8;

 location / {

 ### Only IP-based whitelisting. I whitelist my home IP, but you can choose to use

something like HTTP auth if you want.

 ### Some might also be fine with exposing qBitTorrent's login page directly. If so,

leave this commented.

 # allow 127.0.0.1;

 # allow 192.168.0.0/24;

 # deny all;

 ### If you want to use a mixture of IP address whitelisting, with fallback to HTTP

authentication where the IP whitelist fails, you can uncomment the section below.

 ### This would allow you to access qBitTorrent on other networks (e.g. when

traveling), but still add an extra layer of protection besides the qBitTorrent's web UI

authentication.

 # satisfy any;

 # allow 127.0.0.1;

 # allow 192.168.0.0/24;

 ### On Debian or Ubuntu, you can install the `apache2-utils` package via apt: `apt

install apache2-utils`

 ### Which will allow you to run: `htpasswd -c /etc/nginx/.htpasswd-qbittorrent the-

username-you-want-to-use-here`

 ### The command above will prompt for password, unless you specify it after the

username in the command itself.

 ### Note that with HTTP authentication, *both* the username and password are case

sensitive.

 # auth_basic "Restricted Area";

 # auth_basic_user_file /etc/nginx/.htpasswd-qbittorrent;

 ### Don't forget to uncomment this line if you use the HTTP auth + IP whitelist mix

above.

 # deny all;

 ### Make sure the `8888` port here matches the first port in the docker-compose.yml

file

 ### E.g. if your "ports" line has: "127.0.0.1:8123:8080", you would put: `proxy_pass

http://127.0.0.1:8123;`

 proxy_pass http://127.0.0.1:8888;

 proxy_http_version 1.1;

 ### The `8080` port here has to match the one in the `WEBUI_PORT` in docker-

compose.yml

 ### Or else you will have issues...

 proxy_set_header Host 127.0.0.1:8080;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_set_header X-Forwarded-Host $http_host;

 proxy_set_header X-Forwarded-For $remote_addr;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_hide_header Content-Security-Policy;

 ### Optionally, you can adjust the POST request size limit, to allow adding a lot of

torrents at once

 ### 100M might be a bit overkill, but for large torrents with tons of files,

 ### you'll likely run into problems if you choose not to adjust this at all.

 client_max_body_size 100M;

 ### since v4.2.2, is possible to configure qBittorrent

 ### to set the "Secure" flag for the session cookie automatically.

 ### However, that option does nothing unless using qBittorrent's built-in HTTPS

functionality.

 ### For this use case, where qBittorrent itself is using plain HTTP

 ### (and regardless of whether or not the external website uses HTTPS),

 ### the flag must be set here, in the proxy configuration itself:

 proxy_cookie_path / "/; Secure";

 }

 location /.well-known {

 auth_basic "off";

 }

 location = /favicon.ico { access_log off; log_not_found off; }

 location = /robots.txt { access_log off; log_not_found off; }

 access_log /var/log/nginx/qbittorrent-access.log combined;

 error_log /var/log/nginx/qbittorrent-error.log error;

 location ~ /\.ht {

 deny all;

 }

}

Revision #22
Created 6 July 2021 12:48:36 by Alex Thomassen

Updated 23 February 2025 17:51:29 by Alex Thomassen

